mTORC1 links protein quality and quantity control by sensing chaperone availability

mTORC1通过感知分子伴侣的可用性来连接蛋白质的质量和数量控制

阅读:5
作者:Shu-Bing Qian, Xingqian Zhang, Jun Sun, Jack R Bennink, Jonathan W Yewdell, Cam Patterson

Abstract

Balanced protein synthesis and degradation are crucial for proper cellular function. Protein synthesis is tightly coupled to energy status and nutrient levels by the mammalian target of rapamycin complex 1 (mTORC1). Quality of newly synthesized polypeptides is maintained by the molecular chaperone and ubiquitin-proteasome systems. Little is known about how cells integrate information about the quantity and quality of translational products simultaneously. We demonstrate that cells distinguish moderate reductions in protein quality from severe protein misfolding using molecular chaperones to differentially regulate mTORC1 signaling. Moderate reduction of chaperone availability enhances mTORC1 signaling, whereas stress-induced complete depletion of chaperoning capacity suppresses mTORC1 signaling. Molecular chaperones regulate mTORC1 assembly in coordination with nutrient availability. This mechanism enables mTORC1 to rapidly detect and respond to environmental cues while also sensing intracellular protein misfolding. The tight linkage between protein quality and quantity control provides a plausible mechanism coupling protein misfolding with metabolic dyshomeostasis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。