Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling

PIMREG 的过度表达通过激活 NF-κB 信号传导促进乳腺癌的侵袭性

阅读:5
作者:Lili Jiang, Liangliang Ren, Xiaolan Zhang, Han Chen, Xuhong Chen, Chun Lin, Lan Wang, Ning Hou, Jinyuan Pan, Zhongqiu Zhou, Hongbiao Huang, Danping Huang, Jianan Yang, Yingying Liang, Jun Li

Background

It is well-established that activation of nuclear factor-kappa B (NF-κB) signaling plays important roles in cancer development and progression. However, the underlying mechanism by which the NF-κB pathway is constitutively activated in cancer remains largely unclear. The present study aimed to investigate the effect of PICALM interacting mitotic regulator (PIMREG) on sustaining NF-κB activation in breast cancer.

Methods

The underlying mechanisms in which PIMREG-mediated NF-κB constitutive activation were determined via immunoprecipitation, EMSA and luciferase reporter assays. The expression of PIMREG was examined by quantitative PCR and western blotting analyses and immunohistochemical assay. The effect of PIMREG on aggressiveness of breast cancer cell was measured using MTT, soft agar clonogenic assay, wound healing and transwell matrix penetration assays in vitro and a Xenografted tumor model in vivo. Findings: PIMREG competitively interacted with the REL homology domain (RHD) of NF-κB with IκBα, and sustained NF-κB activation by promotion of nuclear accumulation and transcriptional activity of NF-κB via disrupting the NF-κB/IκBα negative feedback loop. PIMREG overexpression significantly enhanced NF-κB transactivity and promoted the breast cancer aggressiveness. The expression of PIMREG was markedly upregulated in breast cancer and positively correlated with clinical characteristics of patients with breast cancer, including the clinical stage, tumor-node-metastasis classification and poorer survival. Interpretation: PIMREG promotes breast cancer aggressiveness via disrupting the NF-κB/IκBα negative feedback loop, which suggests that PIMREG might be a valuable prognostic factor and potential target for diagnosis and therapy of metastatic breast cancer. FUND: The science foundation of China, Guangdong Province, Guangzhou Education System, and the Science and Technology Program of Guangzhou.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。