miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications

miR-195-3p 通过表观遗传修饰靶向 IL-31 缓解同型半胱氨酸介导的动脉粥样硬化

阅读:8
作者:Jiantuan Xiong, Fang Ma, Ning Ding, Lingbo Xu, Shengchao Ma, Anning Yang, Yinju Hao, Huiping Zhang, Yideng Jiang

Abstract

Atherosclerosis is a serious age-related disease, which has a tremendous impact on health care globally. Macrophage inflammation is crucial for the initiation and progression of atherosclerosis, and microRNAs (miRNAs) recently have emerged as potent modulators of inflammation, while the underlying mechanisms of its involvement in homocysteine (Hcy)-mediated macrophage inflammation of atherosclerosis remain largely unknown. Here, we demonstrated that elevated Hcy inhibits the expression of miR-195-3p, which in turn enhances IL-31 expression and thereby causes the secretion of macrophages pro-inflammatory factors IL-1β, IL-6 and TNF-α and accelerate atherosclerosis. Furthermore, we identified that Hcy can induce DNA hypermethylation and H3K9 deacetylation of miR-195-3p promoter due to the increased the binding of DNMT3a and HDAC11 at its promoter. More importantly, Sp1 interacts with DNMT3a suppressed the binding of HDAC11 at miR-195-3p promoter and promoted its transcription. In summary, our results revealed a novel mechanism that transcriptional and epigenetic regulation of miR-195-3p inhibits macrophage inflammation through targeting IL-31, which provides a candidate diagnostic marker and novel therapeutic target in cardiovascular diseases induced by Hcy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。