Osteoclast inhibitory peptide-1 binding to the Fc gammaRIIB inhibits osteoclast differentiation

破骨细胞抑制肽-1 与 FcγRIIB 结合可抑制破骨细胞分化

阅读:4
作者:Srinivasan Shanmugarajan, Craig C Beeson, Sakamuri V Reddy

Abstract

Osteoclast inhibitory peptide-1 (OIP) is an autocrine/paracrine inhibitor of osteoclast differentiation, and mice that overexpress OIP-1 in osteoclast lineage cells develop an osteopetrosis bone phenotype. In this study, we show that OIP-1 binding to the Fc gamma receptor IIB (Fc gammaRIIB) inhibits osteoclast differentiation. Confocal microscopy revealed colocalization of OIP-1 with Fc gammaRIIB in osteoclasts, and we observed that OIP-1 carboxy-terminal GPI-linked peptide forms a 1:1 complex with recombinant Fc gammaRIIB protein with an affinity binding of a dissociation constant of approximately 4 microm. Immunoreceptor tyrosine-based activation motif (ITAM)-bearing adapter proteins (FcR gamma and DNAX-activating protein of molecular mass 12 kDa) are critical for osteoclast development, and OIP-1 transgenic mouse-derived preosteoclast cells demonstrated suppression (6-fold) of ITAM phosphorylation of FcR gamma but not DNAX-activating protein of molecular mass 12 kDa. Interestingly, these preosteoclast cells demonstrated increased levels (4-fold) of immunoreceptor tyrosine-based inhibitory motif phosphorylation of Fc gammaRIIB and Src homology 2-domain-containing proteins tyrosine phosphatase 1 activation. Further, OIP-1 mouse-derived preosteoclasts cells demonstrated inhibition of spleen tyrosine kinase activation (4.5-fold), compared with wild-type mice. These results suggest that cross-regulation of immunoreceptor tyrosine-based inhibitory motif and ITAM bearing Fc receptors may play a role in OIP-1 suppression of spleen tyrosine kinase activation and inhibition of osteoclast differentiation. Thus, OIP-1 is an important physiologic regulator of osteoclast development and may have therapeutic utility for bone diseases with high bone turnover.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。