Aerobic exercise improves intestinal mucosal barrier dysfunction through TLR4/MyD88/NF-κB signaling pathway in diabetic rats

有氧运动通过TLR4/MyD88/NF-κB信号通路改善糖尿病大鼠肠黏膜屏障功能

阅读:3
作者:Jianping Li, Xia Liu, Yuzhen Wu, Wei Ji, Qinghua Tian, Shichen Li

Abstract

This study examined the effects of aerobic exercise on the intestinal mucosal barrier dysfunction in diabetic rats. We established a diabetic rats model consisting of three groups: normal control (NC), diabetes control (DC), and diabetes eight-week aerobic exercise (DE). We measured serum fasting blood glucose (FBG), insulin (INS), diamine oxidase (DAO), D(-)-lactate (D-Lac), lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and insulin resistance index (HOMA-IR). Intestinal sections of tissue were stained with H&E and examined using transmission electron microscopy. Expressions of occludin, claudin-1, toll-like receptor-4 (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor-κB (NF-κB) in small intestinal mucosa were determined by Western Blot. In comparison to NC, FBG, HOMA-IR, DAO, D-Lac, TNF-α, IL-6, and LPS were increased (P < 0.05) in DC, whereas INS, villus height, crypt depth, and mucosal thickness were decreased (P < 0.05). In comparison to DC, FBG, DAO, D-Lac, TNF-α, and LPS were decreased (P < 0.05) in DE, whereas INS, villus height, crypt depth, and mucosal thickness were increased (P < 0.05). In comparison to NC, occludin and claudin-1 were decreased (P < 0.05) in DC, whereas TLR4, MyD88, and NF-κB were increased (P < 0.05). In comparison to DC, occludin and claudin-1 were increased (P < 0.05) in DE, whereas TLR4, MyD88, and NF-κB were decreased (P < 0.05). In conclusion, eight-week aerobic exercise improved intestinal mucosal barrier dysfunction in diabetic rats, by inhibiting LPS release, TLR4/MyD88/NF-κB signaling pathway, and pro-inflammatory cytokines expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。