Biomass combustion produces ice-active minerals in biomass-burning aerosol and bottom ash

生物质燃烧在生物质燃烧气溶胶和底灰中产生冰活性矿物

阅读:4
作者:Leif G Jahn, Michael J Polen, Lydia G Jahl, Thomas A Brubaker, Joshua Somers, Ryan C Sullivan

Abstract

Ice nucleation and the resulting cloud glaciation are significant atmospheric processes that affect the evolution of clouds and their properties including radiative forcing and precipitation, yet the sources and properties of atmospheric ice nucleants are poorly constrained. Heterogeneous ice nucleation caused by ice-nucleating particles (INPs) enables cloud glaciation at temperatures above the homogeneous freezing regime that starts near -35 °C. Biomass burning is a significant global source of atmospheric particles and a highly variable and poorly understood source of INPs. The nature of these INPs and how they relate to the fuel composition and its combustion are critical gaps in our understanding of the effects of biomass burning on the environment and climate. Here we show that the combustion process transforms inorganic elements naturally present in the biomass (not soil or dust) to form potentially ice-active minerals in both the bottom ash and emitted aerosol particles. These particles possess ice-nucleation activities high enough to be relevant to mixed-phase clouds and are active over a wide temperature range, nucleating ice at up to -13 °C. Certain inorganic elements can thus serve as indicators to predict the production of ice nucleants from the fuel. Combustion-derived minerals are an important but understudied source of INPs in natural biomass-burning aerosol emissions in addition to lofted primary soil and dust particles. These discoveries and insights should advance the realistic incorporation of biomass-burning INPs into atmospheric cloud and climate models. These mineral components produced in biomass-burning aerosol should also be studied in relation to other atmospheric chemistry processes, such as facilitating multiphase chemical reactions and nutrient availability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。