Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software

Pluri-IQ:通过基于图像的分析软件量化胚胎干细胞多能性

阅读:5
作者:Tânia Perestrelo, Weitong Chen, Marcelo Correia, Christopher Le, Sandro Pereira, Ana S Rodrigues, Maria I Sousa, João Ramalho-Santos, Denis Wirtz

Abstract

Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。