Copper promotes cardiac functional recovery via suppressing the transformation of fibroblasts to myofibroblasts in ischemia-infarcted monkey hearts

铜通过抑制缺血梗塞猴心脏成纤维细胞向肌成纤维细胞的转化促进心脏功能恢复

阅读:9
作者:Ying Xiao, Qipu Feng, Lu Huang, Xia Meng, Pengfei Han, Wenjing Zhang, Yujian James Kang

Abstract

Myocardial ischemia leads to cardiac fibrosis along with copper (Cu) loss. Cu repletion diminishes myocardial fibrosis and improves cardiac function. The transformation of fibroblasts to myofibroblasts is highly responsible for the pathogenesis of cardiac fibrosis. This study was undertaken to test the hypothesis that Cu inhibition of cardiac fibrosis results from suppression of myofibroblasts. Rhesus monkeys 4-5 years old were subjected to coronary artery ligation to induce myocardial infarction (MI). At the end of the fourth week after the surgery, an ultrasound-directed Cu-albumin microbubble organ-specific Cu delivery technique was used to treat the ischemia-infarcted monkey hearts twice a week for 4 weeks. This treatment increased Cu concentrations in the infarct area, loosened the collagen cross-linking network, restored blood vessel density, and improved cardiac contractility. Total fibroblasts labeled with vimentin were increased in the infarct area, and Cu repletion did not alter this increase. Myofibroblasts, dually labeled with vimentin and α-smooth muscle actin (α-SMA), were also significantly increased in the infarct area but were significantly reduced by Cu repletion. Correspondingly, the products of myofibroblasts, type I and III collagens and inhibitors of collagenases were significantly reduced. In contrast, metalloproteinase-1 (MMP-1) and MMP-1 producing fibroblasts (vimentin+ and MMP-1+ cells) were significantly increased. These results suggest that Cu inhibits the transformation of fibroblasts to myofibroblasts, leading to a pro-fibrinolytic switch and an improvement in cardiac function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。