Concurrent Aerobic and Resistance Training Has Anti-Inflammatory Effects and Increases Both Plasma and Leukocyte Levels of IGF-1 in Late Middle-Aged Type 2 Diabetic Patients

同时进行有氧运动和阻力训练具有抗炎作用,并可提高中老年 2 型糖尿病患者血浆和白细胞中的 IGF-1 水平

阅读:4
作者:Giosuè Annibalini, Francesco Lucertini, Deborah Agostini, Luciana Vallorani, Annamaria Gioacchini, Elena Barbieri, Michele Guescini, Lucia Casadei, Annunziata Passalia, Marta Del Sal, Giovanni Piccoli, Mauro Andreani, Ario Federici, Vilberto Stocchi

Abstract

Type 2 diabetes (T2D) is an age-related chronic disease associated with metabolic dysregulation, chronic inflammation, and activation of peripheral blood mononuclear cells (PBMC). The aim of this study was to assess the effects of a concurrent exercise training program on inflammatory status and metabolic parameters of T2D patients. Sixteen male patients (age range 55-70) were randomly assigned to an intervention group (n = 8), which underwent a concurrent aerobic and resistance training program (3 times a week; 16 weeks), or to a control group, which followed physicians' usual diabetes care advices. Training intervention significantly improved patients' body composition, blood pressure, total cholesterol, and overall fitness level. After training, plasma levels of adipokines leptin (-33.9%) and RBP4 (-21.3%), and proinflammatory markers IL-6 (-25.3%), TNF-α (-19.8%) and MCP-1 (-15.3%) decreased, whereas anabolic hormone IGF-1 level increased (+16.4%). All improvements were significantly greater than those of control patients. Plasma proteomic profile of exercised patients showed a reduction of immunoglobulin K light chain and fibrinogen as well. Training also induced a modulation of IL-6, IGF-1, and IGFBP-3 mRNAs in the PBMCs. These findings confirm that concurrent aerobic and resistance training improves T2D-related metabolic abnormalities and has the potential to reduce the deleterious health effects of diabetes-related inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。