Downregulation of RhoA and changes in T cell cytoskeleton correlate with the abrogation of allograft rejection

RhoA 的下调和 T 细胞骨架的变化与同种异体移植排斥的消除相关

阅读:6
作者:T Spencer Skelton, Neelam Tejpal, Yongquan Gong, Malgorzata Kloc, Rafik M Ghobrial

Abstract

Proper actin cytoskeleton architecture and dynamics are indispensable for events in the immunological response such as T cell migration, redistribution of T cell receptors, and interaction with antigen presenting cells. Thus, T cell activation, downstream signaling events and effector functions are all actin-dependent. Actin cytoskeleton architecture and dynamics are regulated by proteins belonging to the superfamily of small GTP-binding proteins, such as RhoA GTPase. We previously showed that the administration of an MHC class I allochimeric molecule [alpha1h1/u]-RT1.Aa, which contains donor-type (Wistar Furth, WF; RT1u) immunogenic epitopes displayed on recipient-type (ACI, RT1a) sequences, to the ACI recipient of heterotopic WF heart resulted in the restriction of the TCR repertoire, inhibition of T cell infiltration into the heterotopic cardiac allografts, abrogation of acute and chronic rejection, and induction of indefinite survival of the allograft. Here we show that the allochimeric molecule treatment caused downregulation of RhoA GTPase in T cells. This resulted in dramatic changes in the distribution of actin and the actin-binding protein, Hip55, in these cells, which in turn, inhibited T cell infiltration into the graft. This indicates that the immunosuppressive activity of the allochimeric molecule is achieved via downregulation of the RhoA pathway and disruption of the proper organization of T cell actin cytoskeleton to inhibit T cell functions such as motility and/or TCR signaling events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。