Overexpression of NAC1 confers drug resistance via HOXA9 in colorectal carcinoma cells

NAC1 过度表达通过 HOXA9 导致结直肠癌细胞产生耐药性

阅读:6
作者:Tongfa Ju, Huicheng Jin, Rongchao Ying, Qi Xie, Chunhua Zhou, Daquan Gao

Abstract

Colorectal carcinoma (CRC) is one of the most common types of malignancy worldwide. Recently, neoadjuvant chemotherapy has become an important treatment strategy for CRC. However, treatment frequently fails due to the development of chemoresistance, which is a major obstacle for positive prognosis. However, the underlying mechanisms of chemoresistance remain unclear. The present study assessed the functions of nucleus accumbens‑associated protein 1 (NAC1), an important transcriptional regulator, in CRC progression. Reverse transcription‑quantitative polymerase chain reaction, western blot analysis and immunohistochemistry were performed to detect the expression levels of NAC1. It was identified that NAC1 was significantly overexpressed in CRC compared with non‑tumorous tissues, indicating an oncogenic role. Following this, gain and loss of function analyses were performed in vitro to further investigate the function of NAC1. Cell viability and caspase‑3/7 activity assays were used to assess chemotherapy‑induced apoptosis. These results indicated that overexpression of NAC1 in CRC cells increased resistance to chemotherapy and inhibited apoptosis. Additionally, RNA interference‑mediated knockdown of NAC1 restored the chemosensitivity of CRC cells. Furthermore, mechanistic investigation revealed that NAC1 increased drug resistance via inducing homeobox A9 (HOXA9) expression, and that knockdown of HOXA9 abrogated NAC1‑induced drug resistance. In conclusion, the results of the present study demonstrated that NAC1 may be a critical factor in the develo-pment of chemoresistance, offering a potential novel target for the treatment of CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。