Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins

通过 microRNA 依赖的抗 CRISPR 蛋白表达来激活细胞特异性 CRISPR-Cas9

阅读:3
作者:Mareike D Hoffmann, Sabine Aschenbrenner, Stefanie Grosse, Kleopatra Rapti, Claire Domenger, Julia Fakhiri, Manuel Mastel, Kathleen Börner, Roland Eils, Dirk Grimm, Dominik Niopek

Abstract

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。