MDG‑1 inhibits H2O2‑induced apoptosis and inflammation in human umbilical vein endothelial cells

MDG-1抑制H2O2诱导的人脐静脉内皮细胞凋亡和炎症

阅读:5
作者:Luo-Cheng Li, Zhi-Wei Wang, Xiao-Ping Hu, Zhi-Yong Wu, Zhi-Peng Hu, Yong-Le Ruan

Abstract

MDG‑1, a water‑soluble polysaccharide extracted from Ophiopogon japonicus, has been reported to serve a role in antimyocardial ischemia by protecting cardiomyocytes from hypoxia/reoxygenation‑induced damage. However, it remains unknown whether MDG‑1 protects human umbilical vein endothelial cells (HUVECs) against oxidative stress‑induced damage. In the present study, HUVECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress‑induced cell injury model. Treatment of HUVECs with different concentrations of H2O2 significantly attenuated cell viability and increased cell apoptosis in a time and dose‑dependent manner. Pretreatment with MDG‑1 markedly reduced H2O2‑induced cell death, ROS generation and inflammatory factor secretion. In addition, pretreatment with MDG‑1 decreased the expression levels of proapoptotic proteins BCL2 associated X (Bax) and caspase‑3, while it increased the expression levels of the antiapoptotic protein BCL2 apoptosis regulator (Bcl‑2), compared with H2O2 treatment alone. Taken together, the present data suggest that MDG‑1 protected HUVECs against H2O2‑induced apoptosis and inflammation through inhibition of Bax/Bcl‑2 protein ratio, caspase‑3 expression, and inflammatory factor secretion. This study provides a potential application for MDG‑1 in the treatment of cardiovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。