The Effects of Hyperglycemia on Early Endothelial Activation and the Initiation of Atherosclerosis

高血糖对早期内皮细胞活化和动脉粥样硬化发生的影响

阅读:4
作者:Lauren Mastrogiacomo, Robert Ballagh, Daniel E Venegas-Pino, Hargun Kaur, Peter Shi, Geoff H Werstuck

Abstract

It is well established that patients with diabetes have an increased risk of developing atherosclerotic cardiovascular disease. The earliest detectable sign of atherosclerosis initiation is endothelial cell activation. Activated endothelial cells express adhesion proteins, P-selectin, E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1, which function to recruit monocytes to the subendothelial layer. This study examines the effect of hyperglycemia on endothelial cell activation and the initiation and progression of atherosclerosis. In vitro studies revealed that exposure of human aortic endothelial cells to elevated (30 mmol/L) glucose concentrations significantly increased the expression of P-selectin, E-selectin, and vascular cell adhesion molecule-1. In vivo studies showed that, before lesion development, 5-week-old hyperglycemic ApoE-/-Ins2+/akita mice had significantly increased expression of these adhesion proteins in the aortic sinus and increased macrophage infiltration, compared with normoglycemic ApoE-/- controls. At 25 weeks of age, ApoE-/-Ins2+/akita mice had significantly larger atherosclerotic plaques than ApoE-/- controls (0.022 ± 0.004 versus 0.007± 0.001 mm3; P < 0.05). Similar endothelial activation was observed in heterozygous ApoE+/-Ins2+/akita mice; however, detectable atherosclerotic lesions did not develop in the absence of dyslipidemia. Lowering blood glucose levels (by 55%) using a sodium-glucose cotransporter 2 inhibitor reduced endothelial activation. Together, these findings support a causative role for hyperglycemia in atherogenesis and highlight the importance of blood glucose regulation in preventing atherosclerotic cardiovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。