The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants

表面纹理和润湿性对钛和氧化锆牙种植体初始细菌粘附的影响

阅读:5
作者:Torsten Wassmann, Stefan Kreis, Michael Behr, Ralf Buergers

Background

This study aims to investigate bacterial adhesion on different titanium and ceramic implant surfaces, to correlate these findings with surface roughness and surface hydrophobicity, and to define the predominant factor for bacterial adhesion for each material.

Conclusions

Both surface roughness and wettability may influence the adhesion properties of bacteria on biomaterials; in this context, the predominant factor is dependent on the bacterial species. Wettability was the predominant factor for S. epidermidis and surface texture for S. sanguinis. Zirconia did not show any lower bacterial colonization potential than titanium. Arithmetical mean roughness values R a (measured by stylus profilometer) are inadequate for describing surface roughness with regard to its potential influence on microbial adhesion.

Methods

Zirconia and titanium specimens with different surface textures and wettability (5.0 mm in diameter, 1.0 mm in height) were prepared. Surface roughness was measured by perthometer (R a ) and atomic force microscopy, and hydrophobicity according to contact angles by computerized image analysis. Bacterial suspensions of Streptococcus sanguinis and Staphylococcus epidermidis were incubated for 2 h at 37 °C with ten test specimens for each material group and quantified with fluorescence dye CytoX-Violet and an automated multi-detection reader.

Results

Variations in surface roughness (R a ) did not lead to any differences in adhering S. epidermidis, but higher R a resulted in increased S. sanguinis adhesion. In contrast, higher bacterial adhesion was observed on hydrophobic surfaces than on hydrophilic surfaces for S. epidermidis but not for S. sanguinis. The potential to adhere S. sanguinis was significantly higher on ceramic surfaces than on titanium surfaces; no such preference could be found for S. epidermidis. Conclusions: Both surface roughness and wettability may influence the adhesion properties of bacteria on biomaterials; in this context, the predominant factor is dependent on the bacterial species. Wettability was the predominant factor for S. epidermidis and surface texture for S. sanguinis. Zirconia did not show any lower bacterial colonization potential than titanium. Arithmetical mean roughness values R a (measured by stylus profilometer) are inadequate for describing surface roughness with regard to its potential influence on microbial adhesion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。