EMX1 functions as a tumor inhibitor in spinal cord glioma through transcriptional suppression of WASF2 and inactivation of the Wnt/β-catenin axis

EMX1 通过抑制 WASF2 的转录和失活 Wnt/β-catenin 轴,在脊髓胶质瘤中发挥肿瘤抑制剂的作用

阅读:7
作者:Ziyin Han, Zufang Mou, Yulong Jing, Rong Jiang, Tao Sun

Background

Gliomas are the most frequent and aggressive cancers in the central nervous system, and spinal cord glioma (SCG) is a rare class of the gliomas. Empty spiracles homobox genes (EMXs) have shown potential tumor suppressing roles in glioma, but the biological function of EMX1 in SCG is unclear.

Conclusion

This study elucidates that EMX1 functions as a tumor inhibitor in SCG by suppressing WASF2-dependent activation of the Wnt/β-catenin axis.

Methods

The EMX1 expression in clinical tissues of patients with SCG was examined. SCG cells were extracted from the tissues, and altered expression of EMX1 was then introduced to examine the role of EMX1 in cell growth and invasiveness in vitro. Xenograft tumors were induced in nude mice for in vivo validation. The targets of EXM1 were predicted via bioinformatic analysis and validated by luciferase and ChIP-qPCR assays. Rescue experiments were conducted to validate the involvements of the downstream molecules.

Results

EMX1 was poorly expressed in glioma, which was linked to decreased survival rate of patients according to the bioinformatics prediction. In clinical tissues, EMX1 was poorly expressed in SCG, especially in the high-grade tissues. EMX1 upregulation significantly suppressed growth and metastasis of SCG cells in vitro and in vivo. EMX1 bound to the promoter of WASP family member 2 (WASF2) to suppress its transcription. Restoration of WASF2 blocked the tumor-suppressing effect of EMX1. EMX1 suppressed Wnt/β-catenin signaling activity by inhibiting WASF2. Coronaridine, a Wnt/β-catenin-specific antagonist, blocked SCG cell growth and metastasis induced by WASF2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。