Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input

鸟类穆勒细胞中 GAT-3 的功能可塑性由神经元通过谷氨酸输入调节

阅读:5
作者:Clarissa S Schitine, Orquidia G Mendez-Flores, Luis E Santos, Isis Ornelas, Karin C Calaza, Karla Pérez-Toledo, Esther López-Bayghen, Arturo Ortega, Patrícia F Gardino, Fernando G de Mello, Ricardo A M Reis

Abstract

GABA (γ-amino butyric acid) is the major inhibitory transmitter in the central nervous system and its action is terminated by specific transporters (GAT), found in neurons and glial cells. We have previously described that GAT-3 is responsible for GABA uptake activity in cultured avian Müller cells and that it operates in a Na(+) and Cl(-) dependent manner. Here we show that glutamate decreases [(3)H] GABA uptake in purified cultured glial cells up to 50%, without causing cell death. This effect is mediated by ionotropic glutamatergic receptors. Glutamate inhibition on GABA uptake is not reverted by inhibitors of protein kinase C or modified by agents that modulate cyclic AMP/PKA. Biotinylation experiments demonstrate that this reduction in GABA uptake correlates with a decrease in GAT-3 plasma membrane levels. Interestingly, both GAT-1 and GAT-3 mRNA levels are also decreased by glutamate. Conditioned media (CM) prepared from retinal neurons could also decrease GABA influx, and glutamate receptor antagonists (MK-801 + CNQX) were able to prevent this effect. However, glutamate levels in CM were not different from those found in fresh media, indicating that a glutamatergic co-agonist or modulator could be regulating GABA uptake by Müller cells in this scenario. In the whole avian retina, GAT-3 is present from embryonic day 5 (E5) increasing up to the end of embryonic development and post-hatch period exclusively in neuronal layers. However, this pattern may change in pathological conditions, which drive GAT-3 expression in Müller cells. Our data suggest that in purified cultures and upon extensive neuronal lesion in vivo, shown as a Brn3a reduced neuronal cells and an GFAP increased gliosis, Müller glia may change its capacity to take up GABA due to GAT-3 up regulation and suggests a regulatory interplay mediated by glutamate between neurons and glial cells in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。