5-Aminolevulinic Acid Dehydratase Gene Dosage Affects Programmed Cell Death and Immunity

5-氨基乙酰丙酸脱水酶基因剂量影响程序性细胞死亡和免疫

阅读:5
作者:Qichao Chai, Xiaoguang Shang, Shuang Wu, Guozhong Zhu, Chaoze Cheng, Caiping Cai, Xinyu Wang, Wangzhen Guo

Abstract

Programmed cell death (PCD) is an important form to protect plants from pathogen attack. However, plants must precisely control the PCD process under microbe attacks to avoid detrimental effects. The complexity of how plants balance the defense activation and PCD requires further clarification. Lesion mimic mutants constitute an excellent material to study the crosstalk between them. Here, we identified a Gossypium hirsutum (cotton) lesion mimic mutant (Ghlmm), which exhibits necrotic leaf damage and enhanced disease resistance. Map-based cloning demonstrated that GhLMMD, encoding 5-aminolevulinic acid dehydratase and located on chromosome D5, was responsible for the phenotype. The mutant was resulted from a nonsense mutation within the coding region of GhLMMD It exhibited an overaccumulation of the 5-aminolevulinic acid, elevated levels of reactive oxygen species and salicylic acid, along with constitutive expression of pathogenesis-related genes and enhanced resistance to the Verticillium dahliae infection. Interestingly, GhLMM plays a dosage-dependent role in regulating PCD of cotton leaves and resistance to V. dahliae infection. This study provides a new strategy on the modulation of plant immunity, particularly in polyploidy plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。