SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts

SPARC 敲低可减弱人类翼状胬肉成纤维细胞中 TGF-β1 通过 Smad2/3 通路诱导的纤维化作用

阅读:5
作者:Jianwu Fan, Xin Zhang, Yaping Jiang, Li Chen, Minjie Sheng, Yihui Chen

Conclusion

SPARC knockdown attenuated the fibrotic effect induced by TGF-β1 at least in part by inactivating the Smad2/3 pathways in HPFs. Therefore, SPARC may be a promising therapeutic target for the treatment of pterygium.

Methods

The expression of SPARC in HPFs was knocked down by RNA interference-based approach. Subsequently, we examined the expression of profibrotic markers induced by transforming growth factor-β1 (TGF-β1), including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin (FN). The changes in signaling pathways and matrix metalloproteinases (MMPs) were also detected by western blotting. The cellular migration ability, proliferation ability, apoptosis, and contractile phenotype were detected using the wound healing assay, Cell Counting Kit-8 assay, flow cytometry, and collagen gel contraction assay, respectively. The interaction between SPARC and TGF-β RII was detected by Co-IP

Purpose

Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, has been found to regulate processes involved in fibrotic diseases. The aim of this study was to investigate the anti-fibrotic effects of SPARC in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms.

Results

Silencing of SPARC inhibited the basal and TGF-β1-induced expression of COL1, α-SMA, and FN in HPFs, and suppressed the expression of p-Smad2, p-Smad3, Smad4 and MMP2, MMP9. The downregulation of SPARC also attenuated the cell migration and contractile phenotype of HPFs. SPARC could bind to TGF-βRII under TGF-β1 treatment. However, knockdown of SPARC did not affect the proliferation and apoptosis of HPFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。