Multi-level consistent changes of the ECM pathway identified in a typical keratoconus twin's family by multi-omics analysis

通过多组学分析在典型的圆锥角膜双胞胎家族中识别出 ECM 通路的多层次一致性变化

阅读:3
作者:Xiao-Dan Hao, Xiu-Nian Chen, Yang-Yang Zhang, Peng Chen, Chao Wei, Wei-Yun Shi, Hua Gao

Background

Keratoconus (KC) is a common, degenerative disorder of the cornea, and genetic factors play a key role in its development. However, the genetic etiology of KC is still unclear. This study used the family of twins as material, using, for the first time, multi-omics analysis, to systematically display the changes in KC candidate factors in patients at the DNA, RNA, and protein levels. These can evaluate candidate pathogenic factors in depth and lock onto pathogenic targets.

Conclusions

This study, the first to explore the genetic etiology of KC via multi-omics analysis under the polygenetic model, has provided new insights into the genetic mechanisms underlying KC and an effective strategy for studying KC pathogenesis in the future.

Results

The twins in this study presented classic phenotypes, clear diagnoses, complete case data, and clinical samples, which are excellent materials for genetically studying KC. Whole-exome sequencing was conducted on both the twins and their parents. Transcriptome sequencing was conducted on proband's and health individual's primary human corneal fibroblast cells. Quantitative Real-time PCR and western blot were used to validate the differential gene expressions between the proband and controls. By integrating genomics, transcriptome, and protein level data, multiple consecutive events of KC were systematically analyzed to help better understand the molecular mechanism and genetic basis of KC. The results showed that the accumulation of rare, micro-effect risk variants was the pathogenic factor in this Chinese KC family. Consistent changes in extracellular matrices (ECMs) at the DNA and RNA levels suggested that ECM related changes play a key role in KC pathogenesis. The major gene variants (WNT16, CD248, COL6A2, COL4A3 and ADAMTS3) may affect the expression of related collagens or ECM proteins, thus reducing the amount of ECM in corneas and resulting in KC. Conclusions: This study, the first to explore the genetic etiology of KC via multi-omics analysis under the polygenetic model, has provided new insights into the genetic mechanisms underlying KC and an effective strategy for studying KC pathogenesis in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。