Propofol inhibits the expression of Abelson nonreceptor tyrosine kinase without affecting learning or memory function in neonatal rats

丙泊酚抑制 Abelson 非受体酪氨酸激酶的表达,但不影响新生大鼠的学习或记忆功能

阅读:6
作者:Long Feng, Zhi-Gao Sun, Qiang-Wei Liu, Tao Ma, Zhi-Peng Xu, Ze-Guo Feng, Wei-Xiu Yuan, Hong Zhang, Long-He Xu

Conclusions

The present data suggest that reduced expression of this nonreceptor tyrosine kinase through consecutive daily administration of propofol did not impair learning or memory function in neonatal rats.

Methods

In this study, primary hippocampal neurons were cultured and exposed to propofol at different concentrations. Protein expression was measured by Western blotting and coimmunoprecipitation. The c-Abl transcription level was verified by fluorescence quantitative PCR. Reactive oxygen species (ROS) levels were detected by flow cytometry. In addition, an animal experiment was conducted to assess neuronal apoptosis by immunofluorescence staining for caspase-3 and to evaluate behavioral changes by the Morris water maze (MWM) test.

Objective

Propofol is one of the most commonly used intravenous drugs to induce and maintain general anesthesia. In vivo and in vitro studies have shown that propofol can affect neuronal growth, leading to apoptosis and impairing cognitive function. The Abelson nonreceptor tyrosine kinase (c-Abl) is associated with both neuritic plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease and other neurodegenerative diseases. This study aimed to explore the effect of propofol on apoptosis and neurocognition through its regulation of c-Abl expression in vivo and in vitro. Materials and

Results

The in vitro experiment showed that propofol significantly decreased c-Abl expression and ROS levels. In addition, propofol has no cytotoxic effect and does not affect cell activity. Moreover, in the animal experiment, intraperitoneal injection of 50 mg/kg propofol for 5 days obviously decreased the expression of c-Abl in the neonatal rat brain (p < .05) but did not significantly increase the number of caspase-3-positive cells. Propofol treatment did not significantly reduce the number of platform crossings (p > .05) or prolong the escape latency of neonatal rats (p > .05) in the MWM test. Conclusions: The present data suggest that reduced expression of this nonreceptor tyrosine kinase through consecutive daily administration of propofol did not impair learning or memory function in neonatal rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。