The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer

紫杉醇和非瑟酮PBM纳米粒对卵巢癌细胞凋亡及耐药基因ABCG2逆转的影响

阅读:8
作者:Melayshia McFadden, Santosh Kumar Singh, Briana Kinnel, Sooryanarayana Varambally, Rajesh Singh

Background

High-grade serous ovarian cancer (OvCa) is the most common type of epithelial OvCa. It is usually diagnosed in advanced stages, leaving a woman's chance of survival below 50%. Despite traditional chemotherapeutic therapies, there is often a high recurrence rate following initial treatments. Hence, a targeted drug delivery system is needed to attack the cancer cells and induce apoptosis, overcome acquired drug resistance, and protect normal cells from cytotoxicity. The present study shows that targeting folate receptor alpha (FRα) through planetary ball milling (PBM) nanoparticles (NPs) induces apoptosis in OvCa cells.

Conclusions

Our study shows that PTX-FA and Fis-FA PBM NPs directly target platinum-resistant OvCa cells, induce cytotoxic/apoptotic effects, and reverse multi-drug resistance (MDR). These findings allow us to create new clinical applications using PTX-FA and Fis-FA combination nanoparticles to treat drug-resistant cancers.

Results

Human tissue microarrays (TMAs) show overexpression of FRα in Stage IV OvCa tissues compared to matched normal tissues. They provide a focus for a targeted delivery system. We formulated PBM nanoparticles encapsulated with paclitaxel (PTX) or fisetin (Fis) and conjugated with folic acid (FA). The cytotoxic effect of these PBM NPs reduced the concentration of the toxic chemotherapy drug PTX by five-fold. The combined treatment of PTX-FA NPs and Fis-FA NPs inhibited cell proliferation and induced apoptosis more extensively than the individual drugs alone. Apoptosis of OvCa cells, determined by flow cytometry, showed an increase from 14.4 to 80.4% (OVCAR3 cells) and from 2.69 to 90.0% (CAOV3 cells) in the number of apoptotic cells. Also, expressions of the pro-apoptotic markers, BAK and active caspase-3, were increased after PTX-FA + Fis-FA PBM NP treatment. In addition to looking at targeted treatment effects on apoptosis, drug resistance was investigated. Drug resistance in OvCa cells was reversed by ABCG2, an ABC-transporter marker. Conclusions: Our study shows that PTX-FA and Fis-FA PBM NPs directly target platinum-resistant OvCa cells, induce cytotoxic/apoptotic effects, and reverse multi-drug resistance (MDR). These findings allow us to create new clinical applications using PTX-FA and Fis-FA combination nanoparticles to treat drug-resistant cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。