Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway

抑制 ANGPT2 可通过 PI3K/AKT/mTOR 通路激活增生性瘢痕形成过程中的自噬

阅读:5
作者:Hongxin Chen, Kai Xu, Chao Sun, Si Gui, Juanjuan Wu, Song Wang

Background

Hypertrophic scar (HS), a fibroproliferative disorder caused by aberrant wound healing following skin injuries such as burns, lacerations and surgery, is characterized by invasive proliferation of fibroblasts and excessive extracellular matrix (ECM) accumulation. The dysregulation of autophagy is the pathological basis of HS formation. Previously, angiopoietin-2 (ANGPT2) was found to be overexpressed in HS fibroblasts (HSFs) compared with normal skin fibroblasts. However, whether ANGPT2 participates in the process of HS formation and the potential molecular mechanisms are not clear.

Conclusions

ANGPT2 downregulation represses growth, migration, and ECM accumulation of HSFs via autophagy activation by suppressing the PI3K/Akt/mTOR pathway. Our study provides a novel potential therapeutic target for HS.

Methods

RT-qPCR was used to detect ANGPT2 expression in HS tissues and HSFs. HSFs were transfected with sh-ANGPT2 to knock down ANGPT2 expression and then treated with MHT1485, the mTOR agonist. The effects of sh-ANGPT2 or MHT1485 on the proliferation, migration, autophagy and ECM accumulation of HSFs were evaluated by CCK-8 assay, Transwell assay and western blotting. The expression of PI3K/Akt/mTOR pathway-related molecules (p-PI3K, p-Akt and p-mTOR) was assessed by western blotting.

Objective

This study is intended to figure out the role of ANGPT2 and ANGPT2-mediated autophagy during the development of HS.

Results

ANGPT2 expression was markedly upregulated in HS tissues and HSFs. ANGPT2 knockdown decreased the expression of p-PI3K, p-Akt and p-mTOR. ANGPT2 knockdown activated autophagy and inhibited the proliferation, migration, and ECM accumulation of HSFs. Additionally, the treatment of MHT1485, the mTOR agonist, on ANGPT2-downregulated HSFs, partially reversed the influence of ANGPT2 knockdown on HSFs. Study limitations: The study lacks the establishment of more stable in vivo animal models of HS for investigating the effects of ANGPT2 on HS formation in experimental animals. Conclusions: ANGPT2 downregulation represses growth, migration, and ECM accumulation of HSFs via autophagy activation by suppressing the PI3K/Akt/mTOR pathway. Our study provides a novel potential therapeutic target for HS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。