Integrated network pharmacology and experimental validation to explore the potential pharmacological mechanism of Qihuang Granule and its main ingredients in regulating ferroptosis in AMD

结合网络药理学与实验验证探讨杞黄颗粒及其主要成分调控AMD铁死亡的潜在药理机制

阅读:4
作者:Lu Wang #, Canyang Zhang #, Long Pang, Yan Wang

Background

Qihuang Granule (QHG) is a traditional prescription that has exhibited potential in safeguarding against age-related maculopathy (AMD). Salvia miltiorrhiza (SM) and Fructus lycii (FL) are the main components of QHG. Ferroptosis, a newly discovered, iron-dependent, regulated cell death pathway, have been implicated in the pathogenesis of AMD. This study delves into the intricate mechanism by which SM/FL and QHG confer protection against AMD by modulating the ferroptosis pathway, employing a combination of network pharmacology and experimental validation.

Conclusion

This study demonstrates the molecular mechanism through which SM/FL and QHG protect against AMD and emerges as a plausible mechanism underlying this protection.

Methods

Bioactive compounds and potential targets of SM and FL were gathered from databases such as TCMSP, GeneCard, OMIM, and FerrDb, along with AMD-related genes and key genes responsible for ferroptosis regulation. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network were performed to discover the potential mechanism. The construction of an interaction network involving AMD, ferroptosis, SM/FL potential target genes was facilitated by the STRING database and realized using Cytoscape software. Subsequent validation was accomplished through molecular docking and in vitro cell experiments.

Results

Noteworthy active compounds including quercetin, tanshinone IIA, luteolin, cryptotanshinone, and hub targets such as HIF-1α, EGFR, IL6, and VEGFA were identified. KEGG enrichment unveiled the HIF-1 signalling pathway as profoundly enriched, and IL6 and VEGF were involved. The molecular docking revealed the significant active compounds with hub genes and quercetin showed good binding to HIF-1α, which is involved in inflammation and angiogenesis. Experimental results verified that both herbs and QHG could regulate key ferroptosis-related targets in the retinal pigment epithelium and inhibit the expression of HIF-1α, VEGFA, and IL-6, subsequently increase cell viability and decrease the ROS content induced by H2O2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。