Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia

铜绿假单胞菌高丝氨酸内酯激活人类气道上皮细胞的池操纵 cAMP 和囊性纤维化跨膜调节器依赖性 Cl- 分泌

阅读:8
作者:Christian Schwarzer, Steven Wong, James Shi, Elizabeth Matthes, Beate Illek, Juan P Ianowski, Ryan J Arant, Ehud Isacoff, Horia Vais, J Kevin Foskett, Isabella Maiellaro, Aldebaran M Hofer, Terry E Machen

Abstract

The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl(-) and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl(-) secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca(2+) from the endoplasmic reticulum (ER), lowering [Ca(2+)] in the ER and thereby activating the Ca(2+)-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca(2+)] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl(-) current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca(2+) buffer that lowers [Ca(2+)] in the ER similar to the effect of 3O-C12 also increased cAMP and I(Cl). The results suggest that 3O-C12 stimulates CFTR-dependent Cl(-) and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca(2+)] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl(-) and fluid secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。