Selection of tumorigenic melanoma cells using ALDH

使用 ALDH 筛选致瘤性黑色素瘤细胞

阅读:6
作者:Jim B Boonyaratanakornkit, Lili Yue, Lauren R Strachan, Kenneth J Scalapino, Philip E LeBoit, Ying Lu, Stanley P Leong, Janellen E Smith, Ruby Ghadially

Abstract

Despite increasing knowledge regarding melanoma-initiating cells (MICs), questions persist regarding the number and phenotypic nature of cells with tumor-generating capability. Evidence for a phenotypically distinct human MIC has been found in NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mice. However, a phenotypically distinct human MIC was not found in the NOD/SCIDIl2rg(-)/(-) (NSG) mouse model. The demonstration of a distinct population of human melanoma cells responsible for tumorigenesis and tumor cell self-renewal would provide an important target for new melanoma therapies. In this study, we show a 100-fold range in MIC frequency in human melanoma (1 in 18,000 to 1 in 1,851,000 cells) in the NOD/SCID mouse. In this model, human melanoma cells with high aldehyde dehydrogenase (ALDH) activity were enriched 16.8-fold in tumorigenic cells over unfractionated (UNF) cells, such that 1 in 21,000 cells was a MIC. In the NSG mouse, the ALDH expressing cell population was enriched 100-fold in tumorigenic cells over UNF cells, such that one in four cells was a MIC. Xenograft melanomas that developed from ALDH(+) cells displayed robust self-renewal, whereas those from ALDH(-) cells showed minimal self-renewal in vitro. Thus, ALDH(+) melanoma cells have enhanced tumorigenicity over ALDH(-) cells and superior self-renewal ability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。