Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity

甲基转移酶 SMYD3 通过增强缺氧信号(不依赖于其酶活性)来损害缺氧耐受性

阅读:8
作者:Zixuan Wang, Xiaoyun Chen, Sijia Fan, Chunchun Zhu, Hongyan Deng, Jinhua Tang, Xueyi Sun, Shuke Jia, Qian Liao, Wuhan Xiao, Xing Liu

Abstract

Hypoxia-inducible factor (HIF)1α, a main transcriptional regulator of the cellular response to hypoxia, also plays important roles in oxygen homeostasis of aerobic organisms, which is regulated by multiple mechanisms. However, the full cellular response to hypoxia has not been elucidated. In this study, we found that expression of SMYD3, a methyltransferase, augments hypoxia signaling independent of its enzymatic activity. We demonstrated SMYD3 binds to and stabilizes HIF1α via co-immunoprecipitation and Western blot assays, leading to the enhancement of HIF1α transcriptional activity under hypoxia conditions. In addition, the stabilization of HIF1α by SMYD3 is independent of HIF1α hydroxylation by prolyl hydroxylases and the intactness of the von Hippel-Lindau ubiquitin ligase complex. Furthermore, we showed SMYD3 induces reactive oxygen species accumulation and promotes hypoxia-induced cell apoptosis. Consistent with these results, we found smyd3-null zebrafish exhibit higher hypoxia tolerance compared to their wildtype siblings. Together, these findings define a novel role of SMYD3 in affecting hypoxia signaling and demonstrate that SMYD3-mediated HIF1α stabilization augments hypoxia signaling, leading to the impairment of hypoxia tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。