A novel mechanism of post-translational modulation of HMGA functions by the histone chaperone nucleophosmin

组蛋白伴侣核磷蛋白对 HMGA 功能的翻译后调节的新机制

阅读:6
作者:Laura Arnoldo, Riccardo Sgarra, Eusebio Chiefari, Stefania Iiritano, Biagio Arcidiacono, Silvia Pegoraro, Ilenia Pellarin, Antonio Brunetti, Guidalberto Manfioletti

Abstract

High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide evidence for a novel modulatory mechanism for HMGA functions. We show that HMGAs are complexed in vivo with the histone chaperone nucleophosmin (NPM1), that this interaction requires the histone-binding domain of NPM1, and that NPM1 modulates both DNA-binding affinity and specificity of HMGAs. By focusing on two human genes whose expression is directly regulated by HMGA1, the Insulin receptor (INSR) and the Insulin-like growth factor-binding protein 1 (IGFBP1) genes, we demonstrated that occupancy of their promoters by HMGA1 was NPM1-dependent, reflecting a mechanism in which the activity of these cis-regulatory elements is directly modulated by NPM1 leading to changes in gene expression. HMGAs need short stretches of AT-rich nucleosome-free regions to bind to DNA. Therefore, many putative HMGA binding sites are present within the genome. Our findings indicate that NPM1, by exerting a chaperoning activity towards HMGAs, may act as a master regulator in the control of DNA occupancy by these proteins and hence in HMGA-mediated gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。