Layer-by-Layer Polymer Functionalization Improves Nanoparticle Penetration and Glioblastoma Targeting in the Brain

逐层聚合物功能化可改善纳米粒子的渗透性和脑胶质母细胞瘤的靶向性

阅读:10
作者:Andrew J Pickering, Nicholas G Lamson, Michael H Marand, Wei Hwang, Joelle P Straehla, Paula T Hammond

Abstract

Glioblastoma is characterized by diffuse infiltration into surrounding healthy brain tissues, which makes it challenging to treat. Complete surgical resection is often impossible, and systemically delivered drugs cannot achieve adequate tumor exposure to prevent local recurrence. Convection-enhanced delivery (CED) offers a method for administering therapeutics directly into brain tumor tissue, but its impact has been limited by rapid clearance and off-target cellular uptake. Nanoparticle (NP) encapsulation presents a promising strategy for extending the retention time of locally delivered therapies while specifically targeting glioblastoma cells. However, the brain's extracellular structure poses challenges for NP distribution due to its narrow, tortuous pores and a harsh ionic environment. In this study, we investigated the impact of NP surface chemistry using layer-by-layer (LbL) assembly to design drug carriers for broad spatial distribution in brain tissue and specific glioblastoma cell targeting. We found that poly-l-glutamate and hyaluronate were effective surface chemistries for targeting glioblastoma cells in vitro. Coadsorbing either polymer with a small fraction of PEGylated polyelectrolytes improved the colloidal stability without sacrificing cancer cell selectivity. Following CED in vivo, gadolinium-functionalized LbL NPs enabled MRI visualization and exhibited a distribution volume up to three times larger than liposomes and doubled the retention half-time up to 13.5 days. Flow cytometric analysis of CED-treated murine orthotopic brain tumors indicated greater cancer cell uptake and reduced healthy cell uptake for LbL NPs compared to nonfunctionalized liposomes. The distinct cellular outcomes for different colayered LbL NPs provide opportunities to tailor this modular delivery system for various therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。