Network pharmacology for systematic understanding of Schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome

网络药理学系统认识五味子乙素通过AMPK/Nrf2/NLRP3炎症小体调控细胞焦亡减轻结肠炎上皮细胞损伤

阅读:5
作者:Weiwei Zhang, Wusan Wang, Chaozhuang Shen, Xiaohu Wang, Zhichen Pu, Qin Yin

Abstract

Ulcerative colitis (UC) is a chronic inflammatory disease with increasing incidence and prevalence in many countries. The purpose of this study is to explore the function of Schisandrin B and its underlying molecular mechanisms in colitis. In this study, mice with colitis were induced by giving 2.0% dextran sulfate sodium (DSS, MP) in the drinking water for seven days. Furthermore, TCMSP server and GEO DataSets were used to analyze the mechanism of Schisandrin B in colitis. It was found that Schisandrin B presented colitis in mice model. At the same time, Schisandrin B not only reduced inflammation in vivo and vitro model of colitis, but also suppressed the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome in vivo and vitro model of colitis. In addition, Schisandrin B induced AMP-activated protein kinase (AMPK) / Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in model of colitis, and regulated AMPK protein at 316 sites. The inhibition of AMPK reduced the anti-inflammation effects of Schisandrin B on NLRP3 inflammasome. Apart from that, Schisandrin B decreased reactive oxygen species (ROS)-induced mitochondrial damage and reduced epithelial cells damage of colitis through regulating pyroptosis. Collectively, our novel findings for first time showed that, Schisandrin B suppressed NLRP3 inflammasome activation-mediated interleukin-1beta (IL-1β) level and pyroptosis in intestinal epithelial cells of colitis model through the activation of AMPK/Nrf2 dependent signaling-ROS-induced mitochondrial damage, which may be a significant therapeutic approach in the treatment of acute colitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。