Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis

核糖体靶向抗生素通过抑制线粒体 DNA 合成来控制 NLRP3 介导的炎症

阅读:8
作者:Suyuan Liu, Meiling Tan, Jiangxue Cai, Chenxuan Li, Miaoxin Yang, Xiaoxiao Sun, Bin He

Abstract

While antibiotics are designed to target bacteria specifically, most are known to affect host cell physiology. Certain classes of antibiotics have been reported to have immunosuppressive effects, but the underlying mechanisms remain elusive. Here, we show that doxycycline, a ribosomal-targeting antibiotic, effectively inhibited both mitochondrial translation and nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated caspase-1 activation and interleukin-1β (IL-1β) production in bone-marrow-derived macrophages (BMDMs). In addition, knockdown of mitochondrial methionyl-tRNA formyltransferase (Mtfmt), which is rate limiting for mitochondrial translation, also resulted in the inhibition of NLRP3 inflammasome-mediated caspase-1 activation and IL-1β secretion. Furthermore, both doxycycline treatment and Mtfmt knockdown blocked the synthesis of mitochondrial DNA (mtDNA) and the generation of oxidized mtDNA (Ox-mtDNA), which serves as a ligand for NLRP3 inflammasome activation. In addition, in vivo results indicated that doxycycline mitigated NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and endometritis. Taken together, the results unveil the antibiotics targeting the mitoribosome have the ability to mitigate NLRP3 inflammasome activation by inhibiting mitochondrial translation and mtDNA synthesis thus opening up new possibilities for the treatment of NLRP3-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。