Transcriptional analysis of L-methionine catabolism in the cheese-ripening yeast Yarrowia lipolytica in relation to volatile sulfur compound biosynthesis

奶酪成熟酵母解脂耶氏酵母中 L-蛋氨酸分解代谢与挥发性硫化合物生物合成的转录分析

阅读:5
作者:Orianne Cholet, Alain Hénaut, Agnès Hébert, Pascal Bonnarme

Abstract

Yarrowia lipolytica is one of the yeasts most frequently isolated from the surface of ripened cheeses. In previous work, it has been shown that this yeast is able to convert L-methionine into various volatile sulfur compounds (VSCs) that may contribute to the typical flavors of several cheeses. In the present study, we show that Y. lipolytica does not assimilate lactate in the presence of L-methionine in a cheeselike medium. Nineteen presumptive genes associated with L-methionine catabolism or pyruvate metabolism in Y. lipolytica were transcriptionally studied in relation to L-methionine degradation. The expression levels of the YlARO8 (YALI0E20977g), YlBAT1 (YALI0D01265g), and YlBAT2 (YALI0F19910g) genes (confirmed by real-time PCR experiments) were found to be strongly up-regulated by L-methionine, and a greater variety and larger amounts of VSCs, such as methanethiol and its autooxidation products (dimethyl disulfide and dimethyl trisulfide), were released in the medium when Y. lipolytica was grown in the presence of a high concentration of L-methionine. In contrast, other genes related to pyruvate metabolism were found to be down-regulated in the presence of L-methionine; two exceptions were the YlPDB1 (YALI0E27005g) and YlPDC6 (YALI0D06930g) genes, which encode a pyruvate dehydrogenase and a pyruvate decarboxylase, respectively. Both transcriptional and biochemical results corroborate the view that transamination is the first step of the enzymatic conversion of L-methionine to VSCs in Y. lipolytica and that the YlARO8, YlBAT1, and YlBAT2 genes could play a key role in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。