Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose lipopolysaccharide

气道真菌病和高剂量脂多糖诱发的新型急性过敏性肺炎模型

阅读:7
作者:Yuying Zeng, Yun Zhang, Xinyan Huang, Lizhen Song, Katherine Polsky, Yifan Wu, Farrah Kheradmand, Yubiao Guo, Linda K Green, David B Corry, John M Knight

Background

Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger).

Conclusions

In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.

Methods

C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 μg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined.

Results

In comparison to mice challenged only with A. niger, addition of LPS (1 μg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. Conclusions: In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。