EPR Oximetry of Cetuximab-Treated Head-and-Neck Tumours in a Mouse Model

小鼠模型中西妥昔单抗治疗头颈部肿瘤的 EPR 血氧测定

阅读:5
作者:H Gustafsson, A Kale, A Dasu, A Lund, P-H Edqvist, K Roberg

Abstract

Head and neck squamous cell carcinoma (HNSCC) tumours are associated with high mortality despite advances in therapy. The monoclonal antibody cetuximab (Erbitux®) has been approved for the treatment of advanced HNSCC. However, only a subset of HNSC patients receiving cetuximab actually responds to treatment, underlining the need for a means to tailor treatments of individual patients. The aim of the present study was to investigate the effect of cetuximab treatment on tumour growth, on tumour partial oxygen pressure as measured by LiPc electron paramagnetic resonance oximetry and on the expression of proteins involved in tumour growth, metabolism and hypoxia. Two HNSCC cell lines, UT-SCC-2 and UT-SCC-14, were used to generate xenografts on female BALB/c (nu/nu) nude mice. Mice with xenografts were given three injections of intraperitoneal cetuximab or phosphate-buffered saline, and the tumour volume was recorded continuously. After treatment the tumour partial oxygen pressure was measured by LiPc electron paramagnetic resonance oximetry and the expression of epidermal growth factor receptor (EGFR), phosphorylated EGFR, Ki-67, MCT1, MCT4, GLUT1, CAIX and HIF-1α were investigated by immunohistochemistry. In xenografts from both cell lines (UT-SCC-2 and UT-SCC-14) cetuximab had effect on the tumour volume but the effect was more pronounced on UT-SCC-14 xenografts. A higher tumour oxygenation was measured in cetuximab-treated tumours from both cell lines compared to untreated controls. Immunocytochemical staining after cetuximab treatment shows a significantly decreased expression of EGFR, pEGFR, Ki67, CAIX and nuclear HIF-1α in UT-SCC-14 tumours compared to untreated controls. MCT1 and GLUT1 were significantly decreased in tumours from both cell lines but more pronounced in UT-SCC-14 tumours. Taken together, our results show that cetuximab treatment decreases the tumour growth and increases the tumour partial oxygen pressure of HNSCC xenografts. Furthermore we found a potential connection between the partial oxygen pressure of the tumours and the expression of proteins involved in tumour growth, metabolism and hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。