FOXA1 hypermethylation: link between parity and ER-negative breast cancer in African American women?

FOXA1 高甲基化:非裔美国女性的生育能力与 ER 阴性乳腺癌之间的联系?

阅读:6
作者:Allyson C Espinal, Matthew F Buas, Dan Wang, David Ting-Yuan Cheng, Lara Sucheston-Campbell, Qiang Hu, Li Yan, Rochelle Payne-Ondracek, Eduardo Cortes, Li Tang, Zhihong Gong, Gary Zirpoli, Thaer Khoury, Song Yao, Angela Omilian, Kitaw Demissie, Elisa V Bandera, Song Liu, Christine B Ambrosone, Micha

Background

Reproductive factors, particularly parity, have differential effects on breast cancer risk according to estrogen receptor (ER) status, especially among African American (AA) women. One mechanism could be through DNA methylation, leading to altered expression levels of genes important in cell fate decisions.

Conclusions

Methylation and expression of FOXA1 is likely impacted by parity and breastfeeding. Because FOXA1 regulates a luminal gene expression signature in progenitor cells and represses the basal phenotype, this could be a mechanism that links these reproductive exposures with ER- breast cancer.

Methods

Using the Illumina 450K BeadChip, we compared DNA methylation levels in paraffin-archived tumor samples from 383 AA and 350 European American (EA) women in the Women's Circle of Health Study (WCHS). We combined 450K profiles with RNA-seq data and prioritized genes based on differential methylation by race, correlation between methylation and gene expression, and biological function. We measured tumor protein expression and assessed its relationship to DNA methylation. We evaluated associations between reproductive characteristics and DNA methylation using linear regression.

Results

410 loci were differentially methylated by race, with the majority unique to ER- tumors. FOXA1 was hypermethylated in tumors from AA versus EA women with ER- cancer, and increased DNA methylation correlated with reduced RNA and protein expression. Importantly, parity was positively associated with FOXA1 methylation among AA women with ER- tumors (P = 0.022), as was number of births (P = 0.026), particularly among those who did not breastfeed (P = 0.008). These same relationships were not observed among EA women, although statistical power was more limited. Conclusions: Methylation and expression of FOXA1 is likely impacted by parity and breastfeeding. Because FOXA1 regulates a luminal gene expression signature in progenitor cells and represses the basal phenotype, this could be a mechanism that links these reproductive exposures with ER- breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。