Synthesis, characterization, and thermal and computational investigations of the L-histidine bis(fluoride) crystal

L-组氨酸双(氟化物)晶体的合成、表征、热学和计算研究

阅读:7
作者:Ian Felipe Sousa Reis, Jailton Romão Viana, João Gomes de Oliveira Neto, Stanislav R Stoyanov, José Walkimar de M Carneiro, Mateus Ribeiro Lage, Adenilson Oliveira Dos Santos

Abstract

Nonlinear optical materials have been investigated recently due to their potential technological applications in information storage and communications. In this context, semi-organic crystals can effectively combine the desired nonlinear optical properties of amino acids with the promising mechanical and thermal properties of inorganic materials. In this work, we have synthesized and characterized a semi-organic crystal of the amino acid L-histidine and hydrofluoric acid and investigated the chemical interactions between the organic and inorganic moieties. The crystal of L-histidine bis(fluoride) has been produced by slow solvent evaporation and characterized by X-ray diffraction (XRD) crystallography and thermogravimetric and differential thermal analyses. The XRD conducted using the Rietveld method shows that the unit cell is orthorhombic with the P21212 space group and contains four L-histidine bis(fluoride) units. Both differential thermal analysis and temperature-dependent XRD show that the crystals are thermally stable up to 191°C and do not undergo phase transition. The computational Hirshfeld surface analysis of the crystal structure reveals the main intermolecular interactions. Density functional theory has been employed to calculate the ionic interaction energy and electrostatic potential maps and confirm the spontaneity of ionic association at 191°C. The combined experimental and computational results show that the thermal stability of the semi-organic L-histidine bis(fluoride) crystal makes it suitable for nonlinear optical applications in optical sensing and communication systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。