Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis

人脐带血管周围细胞来源的细胞外囊泡通过抑制细胞凋亡促进脑缺血大鼠的功能恢复

阅读:6
作者:Elham Seifali, Gholamreza Hassanzadeh, Marzieh Mahdavipour, Keywan Mortezaee, Ashraf Moini, Leila Satarian, Faezeh Shekari, Abdoreza Nazari, Shabnam Movassaghi, Mohammad Akbari

Background

Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine agents including extracellular vesicles (EVs). This study aimed to investigate the effect of human umbilical cord perivascular cells (HUCPVCs)-derived EVs on apoptosis, functional recovery, and neuroprotection.

Conclusion

Our findings showed that HUCPVCs-derived EVs are more effective than their mother's cells in improving neural function, possibly via the regulation of apoptosis in the ischemic rats. The strategy of cell-free extracts is, thus, helpful in removing the predicaments surrounding cell therapy in targeting brain diseases.

Methods

Ischemia was induced by middle cerebral artery occlusion (MCAO) in male Wistar rats. Animals were classified into sham, MCAO, MCAO + HUCPVC, and MCAO + EV groups. Treatments began at two hours after ischemia. Expressions of apoptotic-related proteins (BAX/BCl-2 [B-cell lymphoma-2] and caspase-3 and -9), the amount of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, neuronal density (microtubule-associated protein 2 [MAP2]), and dead neurons (Nissl staining) were assessed on day seven post MCAO.

Results

Administration of EVs improved the sensorimotor function (p < 0.001) and reduced the apoptotic rate of Bax/Bcl-2 ratio (p < 0.001), as well as caspases and TUNEL-positive cells (p < 0.001) in comparison to the MCAO group. EV treatment also reduced the number of dead neurons and increased the number of MAP2+ cells in the ischemic boundary zone (p < 0.001), as compared to the MCAO group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。