An immunocompetent, orthotopic mouse model of epithelial ovarian cancer utilizing tissue engineered tumor cell sheets

利用组织工程肿瘤细胞片建立具有免疫功能的上皮性卵巢癌原位小鼠模型

阅读:11
作者:Ayumi Arauchi, Chieh-Hsiang Yang, Sungpil Cho, Elke A Jarboe, C Matthew Peterson, You Han Bae, Teruo Okano, Margit M Janát-Amsbury

Abstract

Despite the development of a myriad of anticancer drugs that appeared promising in preclinical ovarian cancer animal models, they failed to predict efficacy in clinical testing. To improve the accuracy of preclinical testing of efficacy and toxicity, including pharmacokinetic and pharmacodynamic evaluations, a novel animal model was developed and characterized. In this study, murine ID8 (epithelial ovarian cancer [EOC]) cells as injected cell suspensions (ICS) and as intact cultured monolayer cell sheets (CS) were injected or surgically grafted, respectively, into the left ovarian bursa of 6-8 week-old, female C57BL/6 black mice and evaluated at 8 and 12 weeks after engraftment. Tumor volumes at 8 weeks were as follows: 30.712 ± 18.800 mm(3) versus 55.837 ± 10.711 mm(3) for ICS and CS, respectively, p = 0.0990 (n = 5). At 12 weeks, tumor volumes were 128.129 ± 44.018 mm(3) versus 283.953 ± 71.676 mm(3) for ICS and CS, respectively, p = 0.0112 (n = 5). The ovarian weights at 8 and 12 weeks were 0.02138 ± 0.01038 g versus 0.04954 ± 0.00667 g for ICS and CS, respectively (8 weeks), p = 0.00602 (n = 5); and 0.10594 ± 0.03043 g versus 0.39264 ± 0.09271 g for ICS and CS, respectively (12 weeks), p = 0.0008 (n = 5). These results confirm a significant accelerated tumorigenesis in CS-derived tumors compared with ICS-derived tumors when measured by tumor volume/time and ovarian weight/time. Furthermore, the CS-derived tumors closely replicated the metastatic spread found in human EOC and histopathological identity with the primary tumor of origin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。