Selective Imaging of Matrix Metalloproteinase-13 to Detect Extracellular Matrix Remodeling in Atherosclerotic Lesions

基质金属蛋白酶-13 选择性成像检测动脉粥样硬化病变中的细胞外基质重塑

阅读:5
作者:Ariel Buchler, Maxime Munch, Gedaliah Farber, Xiaoling Zhao, Rami Al-Haddad, Eadan Farber, Benjamin H Rotstein

Conclusions

While both radiotracers successfully identified atherosclerotic plaques, [18F]FMBP showed superior specificity and sensitivity for lesions possessing features of destructive plaque remodeling. The detection of ECM remodeling by selective targeting of MMP-13 may enable characterization of high-risk atherosclerosis featuring elevated collagenase activity.

Procedures

[18F]FMBP and [18F]BR-351 were initially assessed in vitro by incubation with en face aortae from 8 month-old atherogenic ApoE-/- mice. Ex vivo biodistributions, plasma metabolite analyses, and ex vivo autoradiography were analogously performed 30 min after intravenous radiotracer administration in age-matched C57Bl/6 and ApoE-/- mice under baseline or homologous blocking conditions. En face aortae were subsequently stained with Oil Red O (ORO), sectioned, and subject to immunofluorescence staining for Mac-2 and MMP-13.

Purpose

Overexpression and activation of matrix metalloproteinase-13 (MMP-13) within atheroma increases susceptibility to plaque rupture, a major cause of severe cardiovascular complications. In comparison to pan-MMP targeting [18F]BR-351, we evaluated the potential for [18F]FMBP, a selective PET radiotracer for MMP-13, to detect extracellular matrix (ECM) remodeling in vascular plaques possessing markers of inflammation. Procedures: [18F]FMBP and [18F]BR-351 were initially assessed in vitro by incubation with en face aortae from 8 month-old atherogenic ApoE-/- mice. Ex vivo biodistributions, plasma metabolite analyses, and ex vivo autoradiography were analogously performed 30 min after intravenous radiotracer administration in age-matched C57Bl/6 and ApoE-/- mice under baseline or homologous blocking conditions. En face aortae were subsequently stained with Oil Red O (ORO), sectioned, and subject to immunofluorescence staining for Mac-2 and MMP-13.

Results

High-resolution autoradiographic image analysis demonstrated target specificity and regional concordance to lipid-rich lesions. Biodistribution studies revealed hepatobiliary excretion, low accumulation of radioactivity in non-excretory organs, and few differences between strains and conditions in non-target organs. Plasma metabolite analyses uncovered that [18F]FMBP exhibited excellent in vivo stability (≥74% intact) while [18F]BR-351 was extensively metabolized (≤37% intact). Ex vivo autoradiography and histology of en face aortae revealed that [18F]FMBP, relative to [18F]BR-351, exhibited 2.9-fold greater lesion uptake, substantial specific binding (68%), and improved sensitivity to atherosclerotic tissue (2.9-fold vs 2.1-fold). Immunofluorescent staining of aortic en face cross sections demonstrated elevated Mac-2 and MMP-13-positive areas within atherosclerotic lesions identified by [18F]FMBP ex vivo autoradiography. Conclusions: While both radiotracers successfully identified atherosclerotic plaques, [18F]FMBP showed superior specificity and sensitivity for lesions possessing features of destructive plaque remodeling. The detection of ECM remodeling by selective targeting of MMP-13 may enable characterization of high-risk atherosclerosis featuring elevated collagenase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。