MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping

MLL4通过染色质环路为Foxp3诱导准备增强子景观

阅读:6
作者:Katarzyna Placek, Gangqing Hu, Kairong Cui, Dunfang Zhang, Yi Ding, Ji-Eun Lee, Younghoon Jang, Chaochen Wang, Joanne Elizabeth Konkel, Jiuzhou Song, Chengyu Liu, Kai Ge, Wanjun Chen, Keji Zhao

Abstract

MLL4 is an essential subunit of the histone H3 Lys4 (H3K4)-methylation complexes. We found that MLL4 deficiency compromised the development of regulatory T cells (Treg cells) and resulted in a substantial decrease in monomethylated H3K4 (H3K4me1) and chromatin interaction at putative gene enhancers, a considerable portion of which were not direct targets of MLL4 but were enhancers that interacted with MLL4-bound sites. The decrease in H3K4me1 and chromatin interaction at the enhancers not bound by MLL4 correlated with MLL4 binding at distant interacting regions. Deletion of an upstream MLL4-binding site diminished the abundance of H3K4me1 at the regulatory elements of the gene encoding the transcription factor Foxp3 that were looped to the MLL4-binding site and compromised both the thymic differentiation and the inducible differentiation of Treg cells. We found that MLL4 catalyzed methylation of H3K4 at distant unbound enhancers via chromatin looping, which identifies a previously unknown mechanism for regulating the T cell enhancer landscape and affecting Treg cell differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。