Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation

解析嗜盐古菌中热休克反应启动子的调控机制:一般转录因子指导的古菌基因调控的新范式

阅读:7
作者:Qiuhe Lu, Jing Han, Ligang Zhou, James A Coker, Priya DasSarma, Shiladitya DasSarma, Hua Xiang

Abstract

Multiple general transcription factors (GTFs), TBP and TFB, are present in many haloarchaea, and are deemed to accomplish global gene regulation. However, details and the role of GTF-directed transcriptional regulation in stress response are still not clear. Here, we report a comprehensive investigation of the regulatory mechanism of a heat-induced gene (hsp5) from Halobacterium salinarum. We demonstrated by mutation analysis that the sequences 5' and 3' to the core elements (TATA box and BRE) of the hsp5 promoter (P(hsp5)) did not significantly affect the basal and heat-induced gene expression, as long as the transcription initiation site was not altered. Moreover, the BRE and TATA box of P(hsp5) were sufficient to render a nonheat-responsive promoter heat-inducible, in both Haloferax volcanii and Halobacterium sp. NRC-1. DNA-protein interactions revealed that two heat-inducible GTFs, TFB2 from H. volcanii and TFBb from Halobacterium sp. NRC-1, could specifically bind to P(hsp5) likely in a temperature-dependent manner. Taken together, the heat-responsiveness of P(hsp5) was mainly ascribed to the core promoter elements that were efficiently recognized by specific heat-induced GTFs at elevated temperature, thus providing a new paradigm for GTF-directed gene regulation in the domain of Archaea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。