Distinct expression and function of alternatively spliced Tbx5 isoforms in cell growth and differentiation

剪接的 Tbx5 亚型在细胞生长和分化中的独特表达和功能

阅读:5
作者:Romain Georges, Georges Nemer, Martin Morin, Chantal Lefebvre, Mona Nemer

Abstract

Mutations in the T-box transcription factor Tbx5 cause Holt-Oram syndrome, an autosomal dominant disease characterized by a wide spectrum of cardiac and upper limb defects with variable expressivity. Tbx5 haploinsufficiency has been suggested to be the underlying mechanism, and experimental models are consistent with a dosage-sensitive requirement for Tbx5 in heart development. Here, we report that Tbx5 levels are regulated through alternative splicing that generates, in addition to the known 518-amino-acid protein, a C-terminal truncated isoform. This shorter isoform retains the capacity to bind DNA, but its interaction with Tbx5 collaborators such as GATA-4 is altered. In vivo, the two spliced isoforms are oppositely regulated in a temporal and growth factor-dependent manner and are present in distinct DNA-binding complexes. The expression of the long isoform correlates with growth stimulation, and its reexpression in postnatal transgenic mouse hearts promotes hypertrophy. Conversely, the upregulation of the short but not the long isoform in C2C12 myoblasts leads to growth arrest and cell death. The results provide novel insight into posttranscriptional Tbx5 regulation and point to an important role not only in cell differentiation but also in cell proliferation and organ growth. The data may help analyze genotype-phenotype relations in patients with Holt-Oram syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。