Ca(2+) permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca(2+) signaling to sustain muscle function

Ca(2+) 渗透和/或与 CaV1.1 结合可微调骨骼肌 Ca(2+) 信号以维持肌肉功能

阅读:5
作者:Chang Seok Lee, Adan Dagnino-Acosta, Viktor Yarotskyy, Amy Hanna, Alla Lyfenko, Mark Knoblauch, Dimitra K Georgiou, Ross A Poché, Michael W Swank, Cheng Long, Iskander I Ismailov, Johanna Lanner, Ted Tran, KeKe Dong, George G Rodney, Mary E Dickinson, Christine Beeton, Pumin Zhang, Robert T Dirksen,

Background

Ca(2+) influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca(2+) permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed.

Conclusions

While not essential for excitation-contraction coupling, Ca(2+) binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.

Methods

We generated a mouse with a Ca(2+) binding and/or permeation defect in the voltage-dependent Ca(2+) channel, CaV1.1, and used Ca(2+) imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca(2+) imaging techniques to define pathways modulated by Ca(2+) binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles.

Results

Using mice with a pore mutation in CaV1.1 required for Ca(2+) binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca(2+) stores during sustained activity. Decreases in these Ca(2+)-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca(2+) binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. Conclusions: While not essential for excitation-contraction coupling, Ca(2+) binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。