Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity

长寿的 Snell 侏儒小鼠表现出蛋白质稳态机制增强,且不依赖于 mTORC1 活性降低

阅读:5
作者:Joshua C Drake, Danielle R Bruns, Frederick F Peelor 3rd, Laurie M Biela, Richard A Miller, Benjamin F Miller, Karyn L Hamilton

Abstract

Maintaining proteostasis is thought to be a key factor in slowed aging. In several growth-restricted models of long-life, we have shown evidence of increased proteostatic mechanisms, suggesting that proteostasis may be a shared characteristic of slowed aging. The Snell dwarf mouse is generated through the mutation of the Pit-1 locus causing reductions in multiple hormonal growth factors and mTORC1 signaling. Snell dwarfs are one of the longest lived rodent models of slowed aging. We hypothesized that proteostatic mechanisms would be increased in Snell compared to control (Con) as in other models of slowed aging. Using D2O, we simultaneously assessed protein synthesis in multiple subcellular fractions along with DNA synthesis in skeletal muscle, heart, and liver over 2 weeks in both sexes. We also assessed mTORC1-substrate phosphorylation. Skeletal muscle protein synthesis was decreased in all protein fractions of Snell compared to Con, varied by fraction in heart, and was not different between groups in liver. DNA synthesis was lower in Snell skeletal muscle and heart but not in liver when compared to Con. The new protein to new DNA synthesis ratio was increased threefold in Snell skeletal muscle and heart compared to Con. Snell mTORC1-substrate phosphorylation was decreased only in heart and liver. No effect of sex was seen in this study. Together with our previous investigations in long-lived models, we provide evidence further supporting proteostasis as a shared characteristic of slowed aging and show that increased proteostatic mechanisms may not necessarily require a decrease in mTORC1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。