A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks

一种模块化芯片大脑,用于通过功能上连接的人类神经元网络模拟癫痫发作

阅读:5
作者:Anssi Pelkonen, Ropafadzo Mzezewa, Lassi Sukki, Tomi Ryynänen, Joose Kreutzer, Tanja Hyvärinen, Andrey Vinogradov, Laura Aarnos, Jukka Lekkala, Pasi Kallio, Susanna Narkilahti

Abstract

Epilepsies are a group of neurological disorders characterised by recurrent epileptic seizures. Seizures, defined as abnormal transient discharges of neuronal activity, can affect the entire brain circuitry or remain more focal in the specific brain regions and neuronal networks. Human pluripotent stem cell (hPSC)-derived neurons are a promising option for modelling epilepsies, but as such, they do not model groups of connected neuronal networks or focal seizures. Our solution is a Modular Platform for Epilepsy Modelling In Vitro (MEMO), a lab-on-chip device, in which three hPSC-derived networks are separated by a novel microfluidic cell culture device that allows controlled network-to-network axonal connections through microtunnels. In this study, we show that the neuronal networks formed a functional circuitry that was successfully cultured in MEMO for up to 98 days. The spontaneous neuronal network activities were monitored with an integrated custom-made microelectrode array (MEA). The networks developed spontaneous burst activity that was synchronous both within and between the axonally connected networks, i.e. mimicking both local and circuitry functionality of the brain. A convulsant, kainic acid, increased bursts only in the specifically treated networks. The activity reduction by an anticonvulsant, phenytoin, was also localised to treated networks. Therefore, modelling focal seizures in human neuronal networks is now possible with the developed chip.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。