Icariin Inhibits Intestinal Inflammation of DSS-Induced Colitis Mice Through Modulating Intestinal Flora Abundance and Modulating p-p65/p65 Molecule

淫羊藿苷通过调节肠道菌群丰度和调节 p-p65/p65 分子抑制 DSS 诱导的结肠炎小鼠的肠道炎症

阅读:6
作者:Haoran Zhang, Shixuan Zhuo, Danni Song, Leyao Wang, Junyi Gu, Junyan Ma, Yang Gu, Minghui Ji, Meijuan Chen, Yuanyuan Guo

Background

Ulcerative colitis, as a kind of inflammatory bowel disease (IBD) is characterized by abdominal pain. This study aimed to investigate the effect of icariin (ICA) on the intestinal microflora of colitis mice.

Conclusion

ICA can improve intestinal flora abundance and composition of DSS-induced colitis mice, and inhibit tissue damage and inflammatory response through modulating the p-p65/p65 expression.

Methods

Fifteen female C57BL/6 mice were randomly divided into the Control group, dextran sodium sulfate (DSS)-induced colitis (DSS) group, and ICA treatment (DSS+ICA) group. The severity of inflammation in DSS-induced colitis mice was evaluated using disease activity scoring (considering weight-loss percentage, stool-shape change, and stool-bleeding scoring). Pathological changes of mice intestinal tract were evaluated using hematoxylin-eosin (HE) staining. Serum levels of TNF-α and IL-6 were detected with enzyme-linked immunosorbent assay. Expressions of p65 and p-p65 (p-p65/p65 ratio) were analyzed using Western blot assay. 16S rDNA sequencing was used to analyze the abundance and composition of intestinal microflora.

Results

Compared with DSS group, ICA significantly improved disease activity (P < .05) and reduced inflammatory damage of colon tissues (P < .05) in DSS-induced colitis mice. Compared with the DSS group, mice in the ICA group demonstrated significant weight and colon length (P < .05). ICA significantly inhibited expressions of IL-6 and TNF-α compared to the DSS group (P < .05). p-p65/ p65 ratio in the DSS + ICA group was remarkably enhanced compared to the DSS group (P < .05). ICA significantly reduced the proportion and activity of Bacteroides, Helicobacteraceae, Turicibacter, and significantly increased that of beneficial microflora (Lactobacillus, Lachnospiraceae, Akkermansia), so as improved damages of colon tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。