Depth-Resolved Attenuation Mapping of the Vaginal Wall under Prolapse and after Laser Treatment Using Cross-Polarization Optical Coherence Tomography: A Pilot Study

使用交叉偏振光学相干断层扫描对脱垂时和激光治疗后的阴道壁进行深度分辨衰减映射:一项初步研究

阅读:7
作者:Ekaterina Gubarkova, Arseniy Potapov, Alexander Moiseev, Elena Kiseleva, Darya Krupinova, Ksenia Shatilova, Maria Karabut, Andrey Khlopkov, Maria Loginova, Stefka Radenska-Lopovok, Grigory Gelikonov, Gennady Grechkanev, Natalia Gladkova, Marina Sirotkina

Abstract

Vaginal wall prolapse is the most common type of pelvic organ prolapse and is mainly associated with collagen bundle changes in the lamina propria. Neodymium (Nd:YAG) laser treatment was used as an innovative, minimally invasive and non-ablative procedure for the treatment of early-stage vaginal wall prolapse. The purpose of this pilot study was to assess connective tissue changes in the vaginal wall under prolapse without treatment and after Nd:YAG laser treatment using cross-polarization optical coherence tomography (CP OCT) with depth-resolved attenuation mapping. A total of 26 freshly excised samples of vaginal wall from 26 patients with age norm (n = 8), stage I-II prolapses without treatment (n = 8) and stage I-II prolapse 1-2 months after Nd:YAG laser treatment (n = 10) were assessed. As a result, for the first time, depth-resolved attenuation maps of the vaginal wall in the B-scan projection in the co- and cross-polarization channels were constructed. Two parameters within the lamina propria were target calculated: the median value and the percentages of high (≥4 mm-1) and low (<4 mm-1) attenuation coefficient values. A significant (p < 0.0001) decrease in the parameters in the case of vaginal wall prolapse compared to the age norm was identified. After laser treatment, a significant (p < 0.0001) increase in the parameters compared to the normal level was also observed. Notably, in the cross-channel, both parameters showed a greater difference between the groups than in the co-channel. Therefore, using the cross-channel achieved more reliable differentiation between the groups. To conclude, attenuation coefficient maps allow visualization and quantification of changes in the condition of the connective tissue of the vaginal wall. In the future, CP OCT could be used for in vivo detection of early-stage vaginal wall prolapse and for monitoring the effectiveness of treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。