Cinacalcet Improves Bone Parameters Through Regulation of Osteoclast Endoplasmic Reticulum Stress, Autophagy, and Apoptotic Pathways in Chronic Kidney Disease-Mineral and Bone Disorder

西那卡塞通过调节破骨细胞内质网应激、自噬和凋亡途径改善慢性肾脏病-矿物质和骨质疾病中的骨骼参数

阅读:6
作者:Hui-Wen Chiu, Yi-Chou Hou, Chien-Lin Lu, Kuo-Cheng Lu, Wen-Chih Liu, Jia-Fwu Shyu, Jia-Feng Chang, Cai-Mei Zheng

Abstract

The possible mechanisms underlying the quantitative and qualitative effects of cinacalcet on bone were explored in a chronic kidney disease-mineral and bone disorder (CKD-MBD) mouse model in relation to the influence of the interactions among the osteoclast (OC) endoplasmic reticulum (ER) stress, autophagy and apoptosis pathways on OC differentiation. Body weight and biochemical parameters improved significantly in the CKD + cinacalcet groups compared to the CKD group. Micro-computed tomography (μCT) revealed both cortical and trabecular parameters deteriorated significantly in the CKD group and were reversed by cinacalcet in a dose-dependent manner. Nanoindentation analysis of bone quality proved that both cortical hardness and elastic modulus improved significantly with high dose cinacalcet treatment. In vitro studies revealed that cinacalcet inhibited receptor activator of NF-κB ligand (RANKL)/receptor activator of NF-κB (RANK)-induced OC differentiation in a concentration-dependent manner through a close interaction between activation of caspase-related apoptosis, reversal of OC autophagy through the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) pathways, and attenuation of the OC ER stress/CREBH/NFATc1 signaling pathway. Cinacalcet improves both bone quantity and bone quality in CKD mouse model and inhibits OC differentiation through regulation of the interactions among the apoptosis, ER stress, and autophagy pathways within OCs. © 2021 American Society for Bone and Mineral Research (ASBMR).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。