Generation of human gastric assembloids from primary fetal organoids

从原始胎儿类器官生成人类胃组装体

阅读:7
作者:Giada Benedetti, Brendan C Jones, Francesca Sgualdino, Paolo De Coppi, Giovanni Giuseppe Giobbe

Conclusions

fGOs can reliably be generated from human fetal samples. This pioneering assembloid approach paves the way for advancing our comprehension of human gastric epithelium homeostasis and its perturbation, offering a better in vitro platform for the study of gastric epithelial development and therapeutic translation.

Methods

Human fetal gastric organoids (fGOs) were expanded in 3D Matrigel cultures. Confluent organoid cultures were released from the Matrigel dome and resuspended in a collagen I hydrogel. Subsequently, the organoid mixture was seeded in a ring shape within a 24-well plate and allowed to gelate. The structure was lifted in the medium and cultured in floating conditions, allowing for organoid self-assembling into a gastric assembloid. After 10 days of maturation, the assembloids were characterized by immunostaining and RT-PCR, comparing different fetal developmental stages.

Purpose

Understanding human gastric epithelium homeostasis remains partial, motivating the exploration of innovative in vitro models. Recent literature showcases the potential of fetal stem cell-derived organoids in developmental and disease modelling and translational therapies. To scale the complexity of the model, we propose to generate assembloids, aiming to increase gastric maturation to provide new structural and functional insights.

Results

Successful generation of human fetal gastric assembloids (fGAs) was achieved using spontaneous self-aggregation within the collagen I hydrogel. Immunostaining analysis of early and late fGAs showed the establishment of apico-basal cell polarity, secretion of gastric mucins, and the presence of chromogranin A in both samples. Transcriptional markers analysis revealed distinct disparities in markers associated with mature cell types between late and early fetal stages. Conclusions: fGOs can reliably be generated from human fetal samples. This pioneering assembloid approach paves the way for advancing our comprehension of human gastric epithelium homeostasis and its perturbation, offering a better in vitro platform for the study of gastric epithelial development and therapeutic translation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。