Snapshots of ADP-ribose bound to Getah virus macro domain reveal an intriguing choreography

ADP-核糖与盖塔病毒宏域结合的快照揭示了一种有趣的编排

阅读:5
作者:Ana Sofia Ferreira-Ramos #, Gerlind Sulzenbacher #, Bruno Canard, Bruno Coutard

Abstract

Alphaviruses are (re-)emerging arboviruses of public health concern. The nsP3 gene product is one of the key players during viral replication. NsP3 comprises three domains: a macro domain, a zinc-binding domain and a hypervariable region. The macro domain is essential at both early and late stages of the replication cycle through ADP-ribose (ADPr) binding and de-ADP-ribosylation of host proteins. However, both its specific role and the precise molecular mechanism of de-ADP-ribosylation across specific viral families remains to be elucidated. Here we investigate by X-ray crystallography the mechanism of ADPr reactivity in the active site of Getah virus macro domain, which displays a peculiar substitution of one of the conserved residues in the catalytic loop. ADPr adopts distinct poses including a covalent bond between the C''1 of the ADPr and a conserved Togaviridae-specific cysteine. These different poses observed for ADPr may represent snapshots of the de-ADP-ribosylation mechanism, highlighting residues to be further characterised.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。